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FORTRAN IV SUBROUTINES FOR COUPLING COEFFICIENTS AND
MATRIX ELEMENTS IN THE QUANTUM MECHANICAL

THEORY OF ANGULAR MOMENT UM
by William F. Ford and Richard C. Braley

Lewis Research Center

SUMMARY

Subroutines written in FORTRAN 1V are presented for calculating Clebsch-Gordan
coefficients, Racah coefficients, 9-j coefficients, reduced rotation matrix elements, and
other related quantities. Considerable attention is paid to matters of speed and accura-
cy, and the coding is designed to resemble the corresponding mathematical equations as
closely as possible.

INTRODUCTION

The investigation of quantum mechanical systems of two or more particles generally
involves the coupling of the individual angular momenta to some total angular momentum.
The study of this process leads quite naturally to the Clebsch-Gordan coefficients, which
describe the coupling of a pair of particles, and to the Racah and other coefficients,
which describe the transformation from one coupling scheme to another.

Extensive tabulations of such quantities have been available for many years, and
these are very useful for calculations which one might undertake with the aid of a desk
calculator. With the advent of high-speed electronic computers, however, the use of ex-
tensive tabulations becomes more of a hindrance than a help, and one is faced with the
need to generate the relevant coefficients as and when they are required. This is partic-
ularly true of the reduced matrix elements of the rotation operator, which occur in many
applications, because they depend on a continuous variable.

A general-purpose routine designed to furnish some quantity in widespread use, say
for example, a Clebsch-Gordan coefficient, ought to satisfy certain requirements. It
should be accurate, of course, and fast; in addition it must be easy to use and designed
in such a way that the user can modify it readily to suit a particular application.



A common problem arising in the evaluation of the Clebsch-Gordan and Racah coef-
ficients and rotation matrix elements is the appearance of large factorials in the numer-
ators and denominators of the terms in the series. Direct use of the factorials may lead
to roundoff or overflow, while attempts to avoid the problem by introducing binomial co-
efficients are clumsy and time-consuming., The method used here involves logarithms
of the various factorials, which are precalculated and stored in an array; the exponent-
iation is not performed until cancellation occurs via subtraction of the logarithms.

In the following sections we present techniques for computing the Clebsch-Gordan
coefficient, the Racah coefficient, the reduced rotation matrix element, and the 9-j co-
efficient. FORTRAN IV subroutines which employ these techniques are given in the ap-
pendices. The subroutine for evaluating the 9-j coefficient also contains an entry for
computing the reduced matrix element of the spin-angle tensor product.

Within each subroutine the coding has been designed to resemble the actual equa-
tions, so that a potential user can easily make modifications if desired. In order to
maintain this close correspondence and at the same time produce efficient coding, the
basic equations have been rearranged slightly from the forms given by Brink and Satchler
(ref. 1). The reader should also note that the same symbol may be used to represent
different quantities in different sections, and so the definition given in one section ap-
plies to that section only.

CLEBSCH-GORDAN COEFFICIENTS

The expression given by Brink and Satchler (ref. 1, p. 34) for the Clebsch-Gordan
coefficient may be written

(iymy, igmg|IM) = CG
where
C = Aligigd) [(1 - mt iy +my)t(iy + mpiliy - mpt(@ +M)L(@ - 2] /2
and

G=y2J +IZ(-1)H[(j1 +jg - J -mi(j; - my - n)i(jg +mg - n)i(J - jg +my +n)t
n

X(J-jy-my +n)'.n'.:| -1



Here the symbol A, which will appear in the next section as well, stands for a function
defined by '

A(abe) =[(@ +b-c)t(b +c - a)l(c +a - b)'.]l/2 t[(@a+b+c+ 1)'.]1/2

The appearance of factorials in the numerators and denominators of the above ex-
pressions makes it undesirable to evaluate them as written, Our philosophy here and in
the remaining sections will be to avoid the direct use of factorials by means of loga-
rithms, and to arrange matters so that the first term in the series has the value unity.
Thus, to evaluate C, we make use of the fact that

n! = I'(n + 1) = exp {log T'(n + 1)}

to write
9
C = exp<l P) p- EX(Ni) - X(Nyo)
2 £
where X(N) = log I'(N) and
N1=1+(j1+j2—J) N6=1+(j1+m1)
N2=1+(j2+J-j1) N7:1+(j2_m2)
N3:1+(J+j1-j2) N8=1+(J+M)
N4=1+(j1-m1) N9=1+(J—M)

=Ny +N2 +N3- 1

The N; are always integers, and so C vanishes if any N, is smaller than unity; this
condition is equivalent to all the usual triangle inequalities and also the z-component
inequalities for the Clebsch-Gordan coefficient. Because X(N) is needed only for integer
values of N, it can be conveniently precalculated and stored as an array labeled X.
To evaluate G, we write
n
2
G = ZG(n) = G(n,) Z H(n)
n

n=nfg



where H(nl) =1,

H(n) = H(n - 1) S0 _
G(n - 1)

and n, (nz) is the minimum (maximum) value attained by n. The recursion relation for
H(n) reduces to

(n - K)(n - Ky)(n - Kg)
(n - Ky)(n - Kg)n

H(n) = H(n - 1)

where
Ky =N Ky =Ny - Ng
Ko = Ny K5 =Ng- Ny
Kq = Ng

It is easy to verify that n, is the smallest of (Kl’KZ’KS) less one, and n; the largest
of (O,K4,K5).

The first term G(nl), which has been factored out of the series, can be evaluated
using the same technique as for C:

n
1 '
G(n;) = y2J +1(-1) “exp(-Q) Q= E X(K,)
i=1
where
r
' 1
1 1
K3=K3—n1 K6=n1+1

The FORTRAN IV subroutine CG which evaluates the Clebsch-Gordan coefficient by
means of these equations is presented in appendix A. The coding has been arranged so
as to closely resemble the actual equations. The subroutine is written as a function



subprogram, so that a typical call might be

SUM = SUM +ALPHA * CG(J1, M1, J2, M2, J, M)
The arguments J1, . . ., M in the calling vector are to be supplied as floating point
variables, so that either integer or half-integer values may be easily handled.

Provision has also been made for evaluation of the Wigner 3-j coefficient, which is
related to the Clebsch-Gordan coefficient by

. j1-jo-M
i iog J 172 . )
(1 2 >=———( 1 (3ymy,igmg|J - M)

mymy M/ yar v
A typical call for this function might be

SUM = SUM +ALPHA * THREEJ(J1, J2, J, M1, M2, M)

RACAH COEFFICIENTS

The expression given by Brink and Satchler (ref. 1, p. 43) for the Racah coefficient
may be written

W(abcd; ef) = CG
where
C = A(abe)A(acf) A(bdf) A(cde)

and

Gz}:(-l)n(a +b +c +d +1 - n)! [(a +b-e-nt@a+c-f-n'tMd+d-1f-n)
n

X(c+d-e-n)l(e+f-a-d+n)l(e+f-b-c +n)!n£]'1

As in the preceding section, C can be evaluated more conveniently and accurately in the
form



4
C = exp <-;- I) P = Z [X(Ji) + X(Ki) +X(Li) - X(Mi)]
i=1

where X(N) = log I'(N) and
3y =1+(@+b-e)
K;i=1+(b+e-a)
1 =1 +(e +a - b)

M1=J1 +K1+L1—1

Jy =1+(b+d-1)
Ky =1+(d+f-b)
L3=1+(f+b-d)

M3=J3+K3+L3—1

g =1+ +c-1)
K2=1+(c+f-a)
L2=1+(f+a-c)

M2=J2 +K2+L2-1

Iy =1+(c +d-e)
K4=1+(d+e-c)
L4=1+(e+c-d)

M4=J4+K4+L4- 1

All of the quantities Jis Ky, L,, and M, are integers, and the usual triangle inequal-
ities on the arguments of the Racah coefficient are equivalent to requiring that all these

integers (except for Mi) be greater than zero.

To evaluate G we proceed as for the Clebsch-Gordan coefficient, writing

Iy

G =zn: G(n) = G(n,) Z H(n)

n:nl

with H(nl) = 1 as before. In this case the recursion relation for H(n) reduces to

H(n) = H(n - 1)

(n - Jl)(n - J2)(n - J3)(n - J4)

(n - J5)(n - J6)7(n - J.{)n



where
Jg=Jd;7 - Ly
Jg=J; - Lg
Jp=Jdy +My - 1

The first term G(nl) can be written

ny 7 v '
Gy = (-1) Texp(-Q) Q= X - X(Iy
i=1
where
t 1
J1:J1—n1 J5:n1+1—J5
L} 1
J2=J2—n1 J6=n1+1-J6
L
J3=J3—n1 J7=n1+1
1
Jg=dg -1y Jg =Jdg - ng

The FORTRAN IV subroutine RACAH which evaluates the Racah coefficient by means
of these equations is presented in appendix B. The coding has been arranged so as to
closely resemble the actual equations. The subroutine is written as a function subpro-
gram, so that a typical call might be

SUM = SUM +ALPHA * RACAH(A, B, C, D, E, F)

The arguments A, . . ., F in the calling vector are to be supplied as floating point var-
iables, so that either integer or half-integer values may be easily handled.

Provision has also been made for evaluation of the normalized Racah coefficient, or
U-coefficient, which is related to the Racah coefficient by

Ulabed; ef) = ‘/(2e +1)(2f + 1) W(abed; ef)

The U-coefficient has the convenient property that U = 1 whenever a, b, ¢, or d is
zero, provided the triangular inequalities are satisfied. A typical call for this function

7



might be

SUM = SUM +ALPHA * UCOEF(A, B, C, D, E, F)

There is also an entry for evaluation of the Wigner 6-j coefficient, which is some-
times used in preference to the Racah coefficient. It is related to the Racah coefficient

by

{abc} = (-1)2 ey (apeqd; cf)
def

A typical call for this function might be

SUM = SUM +ALPHA *SIXJA, B, C, D, E, F)

REDUCED ROTATION MATRIX ELEMENTS

The expression given by Brink and Satchler (ref, 1, p. 22) for the elements of the
reduced rotation matrix may be written

dgnlmz(g) =CG
where
C=[i+mpt( - mg)t (- my)( +m2),.]1/2

and
2j 2n+mg-m
G = (cosle> (-l)n(tan.;_9> 2 1[(j+m1 -n)'(j - m, - n)!
2 z ;
n

X (my - my +n)'.n'.] -1

As in the preceding sections, C can be evaluated more conveniently and accurately in

the form

4
C = exp(% P> P = Z X(N;)
i=1



where X(N) = log I'(N) and
N2=1+(j—m2) N4=1+(j+m2)

As before, C vanishes if any of the integers N.1 is less than unity.

Before evaluating G we must discuss its dependence on the rotation angle 4. Al-
though G is periodic in 6 with a period of 47 for half-integral j and a period of 27
for integral j, in most applications the range of ¢ is limitedto 0 =9 =g7. We will
take this to be the standard case, and discuss the exceptions later.

Because the expression for G is a power series in tan 1 6 , it is desirable to ar-

range matters so that 9 = 1 7. When @ is larger than %n, this can be accomplished
2

by means of the relation

dl My
mlm2(6) =(-1) ml_mz(ﬂ - 0)
We then write
)
G =G(ny) ) Hm)

with H(nl) =1 as before. In this case the recursion relation for H{n) reduces to

1 2 (n- Kl)(n - KZ)

H(n) = - H(n - 1) <tan 2 >

(n - Ké)n

where Kl = Nl, Kz = N2, and K3 = Nl - N4o

The first term G(nl) can be written

1 \2i 1 \N ny
G(n;) = (cos 3 0) (tan-z- 9) (-1) “exp(-Q)

4
Q=) X

i=1



where N =2n, - (m1 - mz) and
' * .
' '
N2 = Kz - nl N4 = n1 + 1

Finally, let us consider the nonstandard case, where 6 is negative or larger than
7. For negative angles we may use the relation

) )

j m j
dmlmz(e) = (-1) A ,(-0)

For positive angles we may immediately reduce 9 to its value modulo 47. If 0 is
then larger than 27, we may use

, 27 3
d (6) = (-1)“a) (6 - 2m)
m My mymy
and if ¢ is then larger than #, we may use

. 2jH#m-my
17772
d (6) = (-1) al @n - 9)
mmg m mg

The FORTRAN IV subroutine DJMM which evaluates the reduced rotation matrix
element by means of these equations is presented in appendix C. The coding has been
arranged so as to closely resemble the actual equations. The subroutine is written as a
function subprogram, so that a typical call might be

SUM = SUM +ALPHA * DIMM(M1, M2, J, THETA)
The arguments M1, . . ., THETA in the calling vector are to be supplied as floating

point variables, so that either integer or half-integer values of the angular mementum
quantum numbers may be easily handled.

10



9-j COEFFICIENTS AND RELATED QUANTITIES

The expression given by Brink and Satchler (ref. 1, p. 46) for evaluating the Wigner
9-j coefficient in terms of Racah coefficients may be written

LU
LgSqig p =2, (2k + DW( 115385 LKW(igl y51S; sgk)W (2 g5,Jip; 31K)
LSJ

The summation is restricted by triangular inequalities such that the quantity
AL le) A ZSk)A(jzs 1k)

does not vanish, By specializing one or another of the arguments it is possible to derive
simpler expressions for the 9-j coefficient, but in general this will not be attempted
here.

The case where s; = Sg = 1/2 occurs so frequently, however, that it is deserving
of special attention. Only two values of S are possible here, namely S =0 and S = 1.
When S =0 the 9-j coefficient may be obtained directly from the above series, since
only one term survives; the result may be simplified using

6bféce

Y (2e + 1EE + 1)

W(abc0; ef) =

The general relation

L1811
Z(zs + D)W(s s, LJ; Sk) | L9Sgiy p= W(i151L9L; 1 1K)W(Z 989115 jgk)
S LSJ

may then be applied to obtain the 9-j coefficient with S =1 in terms of the 9-j coef-
ficient with S = 0. The final result may be put in the compact form

1.
11511

o - X _ Abypj - Bog

LST=Vi1o2io [ = or  —mn
25 12 Cégq - Dogy
L SJ

11



where
A=W{l lJ' ; J4l
= 15 Igs Jitg
1. . I |
B = (4J +2)W ZZEJIJ; ioE| W JlglzL; L4E

C=y223+1) _

D = 3(4J + 2)w<%% LJ; 1E>

1
E :E(L +dJ +6LJ)

The 9-j coefficients play an important part in evaluating the matrix elements of
products of tensor operators. A case of special interest involves the spin-angle tensors

g lj\L/Is y defined by

gM _ My, Mg
Irsg= E (LMy, sMg|lamy Y| Loy
M Mg

Here Y‘I\L/{ is a spherical harmonic and olSVI is a rank-S tensor in the spin-space of a
particle with intrinsic spin. For spin- 1/2 particles % is the unit operator and o4 is
twice the spin operator, and the reduced matrix element turns out to be expressible as

1. po 1. 27 +1 ,. . 1. M 1.

(L, =i 1 1o = = (oMo, IM|jym Y (2 = jym, |T 1o = jomye)

13311985l 225 1) 2y +1 2m2 MM 15 31m1 1T rsslt 5 12
m,m,

= ‘/2(21 1+ D(2iy + 1)(28 + 1)(2J + 1){1 1" YL[]12>QLSJ

Here a further simplification is possible because of the appearance of the reduced matrix
element of Y;, which is known to vanish unless 7, +19 + L is even. After some alge-

bra the result may be written

1. 1. 2J +1 J,. 1 .1
(15l Tisallta 5 i =y~ D1 30]iz 2 Gpsy

12



where

S
Grop =1 Grip=—
Y@ + 1)
G ) Al +)\2 FA
L1L+1 ~

YAQRT +1)

with A =(L+J+1)/2and X =( - j)(2j +1).

The FORTRAN IV subroutine NINEJ which evaluates the 9-j coefficient in the gen-
eral case is presented in appendix D. The coding has been arranged so as to closely re-
semble the actual equations. The subroutine is written as a function subprogram, so
that a typical call might be

SUM = SUM +ALPHA * NINEJ(L1, S1, J1, L2, 82, J2, L, S, J)

The arguments L1, . . ., J in the calling vector are to be supplied as floating point
variables, so that either integer or half-integer values may be easily handled.

An entry has been provided for obtaining the 9-j coefficient in the special case
where s; =s, = 1/2. A typical call for this function might be

SUM = SUM +ALPHA * QLSJ(L1, J1, L2, J2, L, S, J)

An entry has also been provided for obtaining the reduced matrix elements of the spin-
angle tensor gﬁg J° A typical call for this function might be

SUM =SUM +ALPHA * TLSJ(L1, J1, L2, J2, L, S, J)

CONCLUDING REMARKS

Techniques for computing the Clebsch-Gordan coefficient, the Racah coefficient, the
reduced rotation matrix element, and the 9-j coefficient have been presented. The dif-
ficulties associated with large factorials in the numerators and denominators of terms in
the series were avoided by introducing the logarithms and by arranging matters so that
the first term in the series had the value unity. Various related quantities were also de-
fined and methods given for their computation.

13




FORTRAN IV subroutines based on these techniques are presented in the appendices.
The coding has been designed to resemble the equations in the text, and although this
leads to a slight loss in efficiency, it makes it easy for the user to make changes to suit

his particular application.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, November 4, 1970,
129-02.
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APPENDIX A

SUBROUTINE FOR EVALUATING CLEBSCH-GORDON COEFFICIENT

FUNCTION CG(J1 M1y J2,M2,J4M)
LOGICAL FIRST/.TRUE./,0DD
REAL U1 M1 ,yJ24M2,5J4M

DODUBLE PRECISION SUM

COMMON /CGCOM/X(200)

DATA ZERO/S5.0E-6/
ODD{(N)I=MOD(N,2).EQ.1

C THIS SURBROUTINE CALCULAYES THE CLEBSCH-GORDAN COEFFICIENT <J1sM143J2/M2/73,M>

MODE=1
P=M
GO YO 1
ENTRY THREEJ(JIL 9 J2y Jy MLy M2, M)
MODE=2
P=—M
1 IF (FIRST) GO TO 6

C BEGIN CALCULATION

2 C6=0.0
N=0.1+ABS(M]1+M2-P)
IF (N.NE.O) RETURN

Nl=l.1#(J1+J2-J)

N2=1.1+(J2+J-J1)

N3=1.1+(J+J1-J2)

N4=1.14(J1-M1)

NS=1.1+{J2+M2)

N6=1.1+(J1+M1)

NT7=1a14+(J2-M2)

NB=1.1+(J+M)

NI=1.1+(J-M)

IF (MINO(NL,N2,N3,N4yN5,N6,NT7¢N8,NJ).LT.1) RETURN

FACTOR=1.0
IF (MODE.EQ.2.AND.DDD{N1-N8)) FACTOR=-FACTOR

C TEST FOR SPECIAL VALUES

IF (J1.LE.ZERO.OR.J2.LE.ZERD) GO TO 5
IF (N1.EQ.1.AND.{NR.,EQ.1.0R.N9.EQ.1})} GO TO 5

C CONTINUE CALCULATION

JF (MDDE.FQ.1) FACTOR=SQRT(2.0%J+1.0)*FACTOR
N=N1+N2+N3-1
P=X{NL)+X{NZ2)+XIN3I+X{N4I+X(NSI+XINO6)+X(NTI+X (N8I +X(NI}-XI(N)
K1=N1

K2=Né&

K3=N5

K&=N4—~-N3

K5=N5-N2

NMAX=MINO(K]1,K2,K3)-1

NMIN=MAXO (K4 ,K5,0)

NP1=NMIN+1

IF (ODDI(NMIN}) FACTOR=-FACTOR

15
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TERM=FACTOR
SUM=TERM
IF (NMINLEQ.NMAX) GO TO 4

DO 3 N=NPl,NMAX
ONE={N-K1)*(N-K2}*{N-K3)
THWO=(N-K4)*{N-K5}*N
TERM=TERM*ONE/TWO

3 SUM=SUM+TERM

4 NI=K1-NMIN
N2=K2-NMIN
N3 =K3-NMIN
N4=NP1-K&
N5=NP1-K5
Q=X (NI +X{N2)+X (N3 )} +X{N4)+X(NS)+X{NP1}

CG=EXP(0.5%P—-Q) *SUM
IF (ABS{CG).LE.ZEROD} CG=0.0
RETURN

C SPECIAL CASES

5 IF (MODE.EQ.2) FACTOR=FACTOR/SQRT{2.0%J+1.0)
CG=FACTOR
RETURN

C ARRAY X(N)=LOG(GAMMA(N))

6 FIRST=.FALSE.
NG 7 N=1,200

Q=N

7 XIN)=ALGAMA(Q)
GD 70 2
END
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APPENDIX B

SUBROUTINE FOR EVALUATING RACAH COEFFICIENT

FUNCTION RACAH(A,B,C+DsEyF)
LOGICAL FIRST/.TRUE./,0DD
DOUBLE PRECISION SUM
COMMON /CGCOM/X(200)

DATA ZERD/5.0F-6/

ODD (NI =MOD(N,2).FQ.1

C THIS SUBROUTINE CALCULATES THE RACAH COEFFICIENT W(A48,C4D3E,F)

MODE=1
GO 70 1
ENTRY UCOEF(A,ByC4DyELF)
MODE=2
GO TO 1
ENTRY SIXJ(A,B,F,0,C,F)
MODE =3

1 IF (FIRST) GO TO 6

C BEGIN CALCULATION

2 RACAH=0.0

Jl1=1.1+(A+R-F)
Kl=1.1+(B+E~-A)
L1=1.1+{E+A-B)
IF {(MINO(Jl,K1,L1).LT.1) RETURN

J2=1.1+(A+C-F)
K2=141+{C+F-A)
L2=1.14(F+A-C)
IF (MINO(J2,K2,4L2).LT.1) RETURN

J3=1.1+(B+D-F)
K3=1l.1l+(D+F-8)
L3=1.1+{F+R-D)
IF (MINO(JU3,K3,0L3).LY.1} RETURN

Ja=1.1+#(C+D-€)
K4=1s1+{D+E-C)
L4=1.1+(E+C-D)
IF (MINO(J4,K4,0L4).LT.1) RETURN

FACTOR=1.0

M4=J4+K 4+ 4~ 1

JT=J14+M4-1

IF (MODE.EQ.3.AND.ODD(J7)) FACTOR=—FACTOR

C YEST FOR SPECIAL VALUES

IF (A.GT.7ZFROAND.B.GT.ZERQ.AND.C.GT«ZERDO.AND.D.GT.ZERO) GO TO 3
IF (MODE.NE.2) FACTOR=0D.5*FACTOR/SQRT({(E+0.5)*{F+0.5))

RACAH=FACTOR
RETURN

C CONTINUF CALCULATION

MI=J1+K1+L1-1
M2=J2+K2+L2-1

3 P=X(JL)4X(J2)+X(J3)+X{J4) + X{KII+X(K2)+X(K3) X (K4 )+ X{LL I +X{L2)+X{L3)+X(L4&)
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5900
6000
6100
A200
6300
6400
6500
6600
6700
6800
6900
7000
7100
7200
7300
7400
7500
7600
7700
7800
790N
80C0
8100
R200
8300
8400
3500
8600
8700
8300
8200
9000
g100
3200
9300
9400
9500
9600
7N
9800

M3=J3+K3+L3-1
P=P—X (M1 )-X{M2)=-X{M3)-X(M4)

J5=J41-L2

J6=41-13
NMAX=MINO(JL1,J24J3444)-1
NMIN=MAXO(J54+d6,0)

NPL=NMIN+)

IF (ODD(NMIN)) FACTOR=-FACTOR
TERM=FACTNR

SUM=TERM

IF (NMIN.EQ.NMAX) GO TO 5

DO 4 N=NP1,NMAX
ONF=(N-J1L)* (N=-J2 1% {N=-J3) *(N-J4)
THWO=(N-JS)*{(N-J6)* (N-JTI%N
TERM=TERM*ONE/TWO

4 SUM=SUM+TERM

5 J1=J1-NMIN
J2=J2—-NMIN
J3=J3-NMTN
J4=J4-NMIN
J5=NP1-U5
J6=NP1-J6
JT=J7-NMIN
Q=XTJ1I+XEI2 VX (I3I+X(I4I+X(ISI#X(I6)+XINPL)=X(JT7)

RACAH=EXP{0.5*P-Q) *SUM
IF (ARS(RACAH).LE.ZERO) RACAH=0.0
RETURN

C ARRAY XI[N)=LOGIGAMMA{N))

6 FIRST=,FALSE,.
DG 7 N=1,200

Q=N

7 X{N)=ALGAMA(Q)
GO YO 2
END
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300

400

500

600

700

800

900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2910
3000
3100
3200
3300
3400
3500
3400
3700
3800
2900
4000
4100
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4300
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5500
5670
5700

APPENDIX C

SUBROUTINE FOR EVALUATING REDUCED ROTATION MATRIX ELEMENT

FUNCTION DIMM(J,M]1,M2,THETA)

LOGICAL FIRST/.TRUE./,0DD

REAL JeM1.M2

DOUBLE PRECISION SUM

COMMON /CGCOM/X(200)

DATA 7ERO/S5.CF-6/

DATA HALFPI,,PI,TWOPI,FOURPI/1.5707963,3.1415926,6.2831853,12.566371/
ODDIN)=MND(N,2).FQ.1

C THIS SUBROUTINE CALCULATES THF REDUCED ROTATION MATRIX <J,ML/R(THETA)/J,M2>

IF (FIRST} GU TO 10

C BEGIN CALCULATION

1

NJIMM=3.,0

Nl=1l.1l+{J+M1)

N2=1a1+(J-M2)

N3=1.1+(J-M1)

Na=1.1+(J+M2)

[F (MINO(N1,N2,N3,N4).LT.1) RFTURN

P=X{NII+X{NZI+X{N3)+X(Ns)
FACTOR=1.0

C CHECK FOR STANDARD ANGLE

ANGLF=THETA
1 (ANGLE.LT.-ZERO) GO TO 7
IF (ANGLF.GT.PI) GO TO 8

IF (ANGLE.LT.HALFPI) GO 7O 3
ANGLF=P[-ANGLE

IF (ODD{(N3)) FACTOR=—-FACTOR
N4=N2?

N=N1+N3-2
N3=N1-N&

C TEST FOR SPECIAL VALUES

[F (ANGLE.GT.ZFRO) GO TO 4
NJIMM=0,0

IF (N3.FQ.C) DJMM=FACTOR
RETURN

C CONTINUE CALCULATION

4

NMAX=MIND (N1 yN2)-1
NMIN=MAXO(N3,0)

NP1=NMIN+1

IF (ODD(NMIN)) FACTOR=-FACTOR

ANGLE=ANGLF/?.0

IF (N.GT.DQ) FACTOR=FACTYAR* (COS(ANGLE))**N
T=TAN{ANGLE)

N=2%NMIN-N3
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5800 IF IN.GT.N) FACTOR=FACTORXT**N

5900

6000 TERM=FACTOR

ALQD SUM=T FRM

6200 IF (NMIN.FQ.NMAX) GO TO 6
A309 T=—Tx%x2

6400

6500 DO 5 N=NPLl,NMAX

64500 ONE=(N-N1)*{N-N2)

6700 TWO=(N=-N31*N

A8N0 TERM=TERMx T« ONF "TWO

6900 5 SUM=SUM+TERM

7000

7100 & NI=NL-NMIN

7200 N2=N2-NMIN

7300 N3 =NP]1-N3

7400 Q=X{(N1Y+X{N2)+X(N3)+X(NPL)
7500

7600 DUMM=EXP{0.5%P-Q)*SUM

7700 I (ABRSI{DJIMM).1ELZFRO) DJIMM=0.0
7800 RETURN

790N

80C0 C PEDUCF ANGLF

2100

8200 7 ANGLE=—ANGLE

8300 IF (DDD(N1-N4)) FACTOR=~FACTOR
8400 8 ANGLE=AMDD{ANGLE, FOURPT)
85C0C IF (ANGLE.LT.TWNPI) GO TOQ 9
8600 ANGLE=ANGLE~TWOPI

870¢ IF {ODND{(N1+N3)}) FACTOR=-FACTOR
8800

8900 9 IF (ANGLE.LT.PI) GO 70 2
9000 ANGLE=TWOPI—-ANGLE

9100 IF (ODD{NL+N2)) FACTOR=-FACTOR
92C0 GO 10 2

9309

9400 C ARRAY X(N}=LOG(GAMMA(N))

9500

9609 10 FIRST=,FALSE.

Q700 DO 11 N=1,200

9800 Q=N

990N 11 X{N)=ALGAMA(Q)

1¢a0c GO Th 1

1c100 END
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APPENDIX D

SUBROUTINE FOR EVALUATING NINEJ COEFFICIENT

FUNCTION NINEJ{LL4S145J13L2+4524J2+L+SeJ)
LOGICAL 0ODD

REAL L14S515J140L2452+J2,LeSyJ

DOUBLE PRECISION SUM

DATA ZERO,SQT4PI/5.0E-643.5449077/
ODD(N)=MOD{N,2).EQ.1

P=AMIN1{L1+J,L2+¢S,42+S1)
Q=AMAX1{ABS(L1-J),ABS({L2-S),ABS(J2-51))
N=2.01%0Q

M=M—-N

IF (CDD(M}.0OR.M.LT.0) RETURN

P=Q

0=2.0%P+1.0

N=M/2+1

SUM=0.0

NO 1 M=1,4N

SUM=SUM+Q*RACAH{L 14L2+JySsLsP)-

1 *¥RACAH{J24124S514S,S2,P)—
1 *RACAH(L1+S1yJ9J2,J1,P)
P=P+1.0

1 0=0Q+2.0

NINEJ=SUM
RETURN

C THE FOLLOWING ENTRY IS FOR THE SPECIAL CASE S1=52=1/2

IS ASSUMED THAT ALL SELECTION RULES HAVE BEEN CHECKED PRIOR TO CALL
ENTRY QLSJ(QL1,QJ1,QL2,Q42,QL+0S5,QJ)

ABS(QL-QJ)+0.1

moOOP»23X
HoHtH Ny

+QJV/2.0

IF (M.NE.O) GO TO 2
A=RACAH(QL1,0.5,0QJ,0J2,QJ1,0L2)
IF (N.EQ.1) GO TQ 2
C=SQRT(4.0%QJ+2.0)

GO TO 3

D=4.0%QJ+2.0

E=E+0.5

B=D*RACAH{QL 2+0.5+,0J1+0J+0J2,E)*RACAH{QJ1+0.5,QL2,0L,QL1,HE)
D=3.0%D*RACAH{0.5,0.5,0L +0Jy1.0,F)

NINEJ=({A-B)/ (C-D)

RETURN

C THIS SUBROUTINE CALCULATES THE 9-J COEFFICIENT {(L1,S1,4J1,L2+52¢J2+LeSyJ)
C IT IS ASSUMED THAT ALL SELECTION RULES HAVE BEEN CHECKED PRIOR TO CALL
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5600
5700
5800
5900
6000
6100
6200
A3N0
6400
6500
6600
6700
6800
6900
7000
7100
7200
7300
7400
7500
7600
7710
7800
7900
8000
8100
R200
8300
8400
8500
8600
R700
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RSNl

THE FOLLOWING ENTRY IS FOR COMPUTATION OF
THE REDUCED MATRIX ELEMENTS <L1,1/2,J1//TLSd//L2,1/2,42>
IT IS ASSUMED THAT ALL SELECTION RULES HAVE BEEN CHECKED PRIOR TO CALL

ENTRY TLSUITLLyTJLsTL2+TJ24TLyTS,TJ)

NINEJ=CGITUL+N0.5+TJ40.0,TIJ2,0.5)/SQT4PI
N=TJ+0. 1

IF (ONDIN)) NINEJ=-NINEJ
N=TS*¥{TJ-TL+2.1)

IF (N.GT.0) GO TO 4

NINEJ=NINEJ*SQRT(2.0*TJ+1.0)
RETURN

4 A=(TL+TJ+1.01/2.0
B={TLI-TJ1)*{2.0%TJ1+1.0)
C=(TL2-TJ2)1%(2.0%TJ2+1.0)
GO TO (546457)sN

5 NINEJ=NINEJ*{B+C-A)/SQRT(A)
RETURN
6 NINEJ=NINEJR(B-C)*SQRT(2.,0%A/TJ/(TI+1.0))
RETURN
7 NINEJ=NINEJ* (B+C+A)/SQRT(A)
RETURN
END
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